Relevance vector machine based infinite decision agent ensemble learning for credit risk analysis
نویسندگان
چکیده
In this paper, a relevance vector machine based infinite decision agent ensemble learning (RVMIdeal) system is proposed for the robust credit risk analysis. In the first level of our model, we adopt soft margin boosting to overcome overfitting. In the second level, the RVM algorithm is revised for boosting so that different RVM agents can be generated from the updated instance space of the data. In the third level, the perceptron Kernel is employed in RVM to simulate infinite subagents. Our system RVMIdeal also shares some good properties, such as good generalization performance, immunity to overfitting and predicting the distance to default. According to the experimental results, our proposed system can achieve better performance in term of sensitivity, specificity and overall accuracy. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملClassification of Customer’s Credit Risk Using Ensemble learning (Case study: Sepah Bank)
Banks activities are associated with different kinds of risk such as cresit risk. Considering the limited financial resources of banks to provide facilities, assessment of the ability of repayment of bank customers before granting facilities is one of the most important challenges facing the banking system of the country. Accordingly, in this research, we tried to provide a model for determinin...
متن کاملCredit Scoring Using Ensemble of Various Classifiers on Reduced Feature Set
Credit scoring methods are widely used for evaluating loan applications in financial and banking institutions. Credit score identifies if applicant customers belong to good risk applicant group or a bad risk applicant group. These decisions are based on the demographic data of the customers, overall business by the customer with bank, and loan payment history of the loan applicants. The advanta...
متن کاملElderly Daily Activity-Based Mood Quality Estimation Using Decision-Making Methods and Smart Facilities (Smart Home, Smart Wristband, and Smartphone)
Due to the growth of the aging phenomenon, the use of intelligent systems technology to monitor daily activities, which leads to a reduction in the costs for health care of the elderly, has received much attention. Considering that each person's daily activities are related to his/her moods, thus, the relationship can be modeled using intelligent decision-making algorithms such as machine learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012